Confidence Set for Group Membership
Economics
Further details
We develop new procedures to quantify the statistical uncertainty from sorting units in panel data into groups using data-driven clustering algorithms. In our setting, each unit belongs to one of a finite number of latent groups and its regression curve is determined by which group it belongs to. Our main contribution is a new joint confidence set for group membership. Each element of the joint confidence set is a vector of possible group assignments for all units. The vector of true group memberships is contained in the confidence set with a pre-specified probability. The confidence set inverts a test for group membership. This test exploits a characterization of the true group memberships by a system of moment inequalities. Our procedure solves a high-dimensional one-sided testing problem and tests group membership simultaneously for all units. We also propose a procedure for identifying units for which group membership is obviously determined. These units can be ignored when computing critical values. We justify the joint confidence set under N,T ** asymptotics where we allow T to be much smaller than N. Our arguments rely on the theory of self-normalized sums and high-dimensional central limit theorems. We contribute new theoretical results for testing problems with a large number of moment inequalities, including an anti-concentration inequality for the quasi-likelihood ratio (QLR) statistic. Monte Carlo results indicate that our confidence set has adequate coverage and is informative. We illustrate the practical relevance of our confidence set in two applications.