Mathematics for Economists

Module description

This module aims to make you familiar with those mathematical tools and methods which are used frequently in most economics courses and to show you how they are applied.

Additional Information:

Mathematics is a global language, so the technical skills students acquire in this module can be used internationally.

By solving statistical mathematical problems and exercises, students are equipped with practical problem-solving skills, theoretical skills, and an understanding of mathematical relationships. All of these are highly valuable to employers.

All of the resources for this module are available on the ELE (Exeter Learning Environment).

Full module specification

Module title:Mathematics for Economists
Module code:BEE1024
Module level:1
Academic year:2017/8
Module lecturers:
  • Ms Juliette Stephenson - Convenor
Module credit:15
ECTS value:



BEE1020 OR BEE1035 or A-level Mathematics (or equivalent)


Cannot be taken with BEA1010

Not available to 2nd year AF students or Maths students

Duration of module: Duration (weeks) - term 2:


Module aims

Economic problems are often expressed using mathematical models. Therefore we introduce models which are to be formulated, analysed and then confronted with real-world data. This module aims to make students familiar with those mathematical tools and methods which are used frequently in most economic modules and to demonstrate how they are applied.

ILO: Module-specific skills

  • 1. students will develop the skills to differentiate functions in several variables, the ability to solve economic optimisation problems and basic the skills of matrix manipulation

ILO: Discipline-specific skills

  • 2. will understand the important role of mathematical tools in economics and related disciplines;
  • 3. will have developed basic skills to analyse models from microeconomics and macroeconomics;
  • 4. will be familiar with some concepts of linear algebra that are essential for econometrics;

ILO: Personal and key skills

  • 5. students will have improved their numeracy and also their ability for logical and structured problem analysis

Learning activities and teaching methods (given in hours of study time)

Scheduled Learning and Teaching ActivitiesGuided independent studyPlacement / study abroad

Details of learning activities and teaching methods

CategoryHours of study timeDescription
Contact hours22Lectures

Formative assessment

Form of assessmentSize of the assessment (eg length / duration)ILOs assessedFeedback method

Summative assessment (% of credit)

CourseworkWritten examsPractical exams

Details of summative assessment

Form of assessment% of creditSize of the assessment (eg length / duration)ILOs assessedFeedback method
Examination1002 hours1-5Exam result

Details of re-assessment (where required by referral or deferral)

Original form of assessmentForm of re-assessmentILOs re-assessedTimescale for re-assessment
ExaminationExamination (100%)1-5Exam result

Syllabus plan

This is an indicative outline (further details will be available in lecture 1)
• Partial derivatives for multivariate functions (week 1)
• Unconstrained optimization and applications (week 2-3)
• Constrained optimization and applications (week 4-5)
• Second order conditions (week 6)
• Logarithms and exponential functions (week 7)
• Vectors and matrices (week 8-9)
• Determinants (week 10)
• Revision (week 11)

Indicative learning resources - Basic reading

Basic reading:
Knut Sydsaeter and Peter J. Hammond, (2008) Essential Mathematics for Economic Analysis 3rd Edit, Prentice Hall. Geoff Renshaw, (2009) Maths for Economics 2nd Edit, Oxford.
Ian Jacques, Mathematics for Economics and Business, Addison-Wesley (2002)_ Preferred by students without A level math, but less comprehensive. Occasionally another book may have to be used

Module has an active ELE page?


Origin date


Last revision date